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The film flow down an inclined plane has several features that make it an interesting
prototype for studying transition in a shear flow: the basic parallel state is an exact
explicit solution of the Navier–Stokes equations; the experimentally observed transi-
tion of this flow shows many properties in common with boundary-layer transition;
and it has a free surface, leading to more than one class of modes. In this paper,
unstable wavepackets – associated with the full Navier–Stokes equations with viscous
free-surface boundary conditions – are analysed by using the formalism of absolute
and convective instabilities based on the exact Briggs collision criterion for multiple
k-roots of D(k, ω) = 0, where k is a wavenumber, ω is a frequency and D(k, ω) is the
dispersion relation function.

The main results of this paper are threefold. First, we work with the full Navier–
Stokes equations with viscous free-surface boundary conditions, rather than a model
partial differential equation, and, guided by experiments, explore a large region of the
parameter space to see if absolute instability–as predicted by some model equations–is
possible. Secondly, our numerical results find only convective instability, in complete
agreement with experiments. Thirdly, we find a curious saddle-point bifurcation which
affects dramatically the interpretation of the convective instability. This is the first find-
ing of this type of bifurcation in a fluids problem and it may have implications for the
analysis of wavepackets in other flows, in particular for three-dimensional instabilities.
The numerical results of the wavepacket analysis compare well with the available ex-
perimental data, confirming the importance of convective instability for this problem.

The numerical results on the position of a dominant saddle point obtained by
using the exact collision criterion are also compared to the results based on a
steepest-descent method coupled with a continuation procedure for tracking convec-
tive instability that until now was considered as reliable. While for two-dimensional
instabilities a numerical implementation of the collision criterion is readily available,
the only existing numerical procedure for studying three-dimensional wavepackets
is based on the tracking technique. For the present flow, the comparison shows a
failure of the tracking treatment to recover a subinterval of the interval of unstable
ray velocities V whose length constitutes 29% of the length of the entire unstable
interval of V . The failure occurs due to a bifurcation of the saddle point, where V

† Present address: Ecole Supérieure de Mécanique de Marseille and IRPHE (UMR CNRS 6594),
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is a bifurcation parameter. We argue that this bifurcation of unstable ray velocities
should be observable in experiments because of the abrupt increase by a factor of
about 5.3 of the wavelength across the wavepacket associated with the appearance of
the bifurcating branch. Further implications for experiments including the effect on
spatial amplification rate are also discussed.

1. Introduction
Waves at the surface of a fluid, particularly water waves, have been a fascinating

area of enquiry for as long as there are records. Therefore it is not surprising that
some of the oldest problems in fluid mechanics involve waves on the surface of a
fluid, and interest in such problems seems to be attracting more attention with time.
Among such problems are two classical ones: the water-wave problem, directly related
to the waves that one observes on the ocean, and the thin-film problem, that can be
directly related to waves that one observes on a sloping roadway in the rain, and to
industrial applications in chemical engineering, for example. However the character of
these two problems is quite different: the analysis of the first one is based on inviscid
and irrotational flow theory – potential theory – while the analysis of the second one is
based on viscous flow theory – the Navier–Stokes equations. References to the water-
wave problem date as far back as 1847 (Stokes 1847), while references to the viscous
flow of a thin film go back to 1916 (Nusselt 1916).

Both of the above wave problems deal initially with perturbations about a basic
state: a uniform state of rest or uniform current for the water-wave problem and a
steady gravity-driven parabolic velocity profile for the thin film flow. In the water-wave
problem, the linearization about the basic state admits plane wave solutions satisfying
a dispersion relation which is known analytically and is real for real values of the
wavenumber and frequency. In the thin-film-wave problem, the linearization about
the parabolic velocity profile leads to the Orr–Sommerfeld equation with boundary
conditions coupled to the free-surface displacement, and the associated dispersion
relation is in general complex valued, and except for special limiting cases, can only
be obtained numerically.

In both cases the full nonlinear problem is difficult to tackle and has defied
any comprehensive treatment, although the nonlinear water-wave problem has been
studied in more detail than the nonlinear viscous thin-film problem. The greatest
success in both problems has been achieved by analysing model equations, which
are valid for limited regions of parameter space. Examples of model equations
that have been proposed for water waves are the Korteweg–de Vries equation,
the nonlinear Schrödinger equation, the Boussinesq systems, the Davey–Stewartson
equation and the Zakharov equation. Examples of model equations for viscous thin-
film flow are the Benney equation (Benney 1966), a kinematic-wave equation (Mei
1966), the Roskes equation (Roskes 1970), a complex Ginzburg–Landau model (Lin
1974), and the Kuromoto–Sivashinsky equation (Chang & Demekhin 1995). A model
equation governing the nonlinear long-wave dynamics was derived by Lee & Mei
(1996) by applying the approximate momentum integral method of von Kármán. The
most sophisticated model to date is the boundary-layer model proposed by Chang,
Demekhin & Kopelevich (1993) which includes variations in the transverse direction.

In the case of irrotational water waves as well as in the case of viscous thin-film
flow, the question of stability is of primary importance. For water waves, the stability



Pulse structure and signalling in a film flow on an inclined plane 39

of weakly nonlinear Stokes’ waves has been widely studied leading to the Benjamin–
Feir instability. It is interesting to note that the absolute or convective character of
this instability has never been studied. For thin films the question of linear stability
is already important for the basic state (cf. Kapitza & Kapitza 1949) and has
been an active area of research since the early work of Benjamin and Yih in the
1950s (Benjamin 1957, 1961; Yih 1955), based on approximate solutions of the Orr–
Sommerfeld equation coupled with the free-surface boundary conditions. A stability
analysis of the periodic states bifurcating from the neutral curve was first given by
Lin (1974) who derived a complex Ginzburg–Landau model. Lin showed that there is
an Eckhaus boundary within which the primary periodic states are stable to sideband
perturbations. However, an analysis of the initial-value problem and a test for absolute
or convective instability of the primary or secondary instability has not been given.

Experimental evidence and analysis of model equations show that the absolute
and convective dichotomy is important for both the primary and the secondary
instabilities observed in viscous film flow. Recent experiments of Liu & Gollub (1993,
1994) and Liu, Paul & Gollub (1993) confirmed the primary neutral stability curve
of Benjamin and Yih, and several new observations were made as well. In Liu
et al. (1993) strong evidence was presented for convective instability in all cases.
In Liu & Gollub (1993) unstable periodic waves were tracked until they developed
a spatially chaotic structure. For the range of parameters studied, they also found
that the secondary instability was strictly convective. They also note that secondary
instabilities in thin-film flow have many features in common with instabilities in
other shear flows such as boundary layers (see also the comments on this in Benjamin
1961). A remarkable new development in the experimental results of Liu, Schneider &
Gollub (1995) is the important role of three-dimensionality: they found synchronous
three-dimensional instabilities, subharmonic instabilities and resonant triads; these
three features are also prominently observed in transitional boundary layers.

Recent results on model equations for thin-film flow have been reviewed in Chang
(1994) and Chang & Demekhin (1996). Theoretical aspects of the classification of
instabilities as absolute or convective for thin-film flow have been addressed in Joo &
Davis (1992). In that paper the role of absolute and convective instabilities associated
with the primary instability of thin-film flow was studied using a model equation
and they found predominantly convective instability; but they also found regions in
parameter space where the instability is absolute. The linearized model equation used
in the analysis of Lin (1974) is absolutely unstable for all parameter values in the
unstable range. In Chang & Demekhin (1996) the falling-film flow was shown to be
absolutely stable for all Reynolds numbers below 500 by treating the full linearized
Navier–Stokes equations.

In this paper we study the initial-value problem for the full Navier–Stokes equations
linearized about the basic parabolic velocity profile for thin-film flow analytically,
using the Fourier–Laplace transform to reduce the linearized Navier–Stokes equations
to an inhomogeneous Orr–Sommerfeld equation coupled to inhomogeneous boundary
conditions. The resulting boundary-value problem is treated numerically using a
spectral (Chebyshev polynomials) method. Our main results are threefold. First, we
give an absolute and convective instability classification of the full problem and
describe properties of unstable wavepackets for a large and experimentally relevant
range of the parameter space. Secondly, we show that absolute instability predicted
by the model equations in Joo & Davis (1992) and in Lin (1974) is anomalous and
is not a property of the full equations–indeed, for all values of parameters studied
here we find that the primary instability is convective, in agreement with all known
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experiments. Thirdly, we find that a straightforward application of the saddle-point
technique even in an apparently accurate way to discriminate between absolute and
convective instabilities fails due to an interesting bifurcation that takes place in the
complex wavenumber plane.

The basic fact that the existence of an unstable saddle point is not sufficient for
absolute instability has been recognized since the early days of the development of
the theory of unstable wavepackets in the 1950s. In Briggs (1964), a mathematical
example of an unstable saddle point making no contribution to the instability was
given and a condition was derived, namely a collision criterion, which must be satisfied
by a contributing saddle point. Brevdo (1988) has shown analytically that for the
Eady model of a geophysical flow there exists a countable set of unstable saddle
points and none of these points contributes to the instability. Recently, Lingwood
(1997) has found numerically examples of such saddle points for a rotating boundary
layer flow. Since an application of the Briggs (1964) collision criterion is numerically
more expensive than a saddle-point treatment, procedures have been developed for
applying the saddle-point technique without performing a direct collision check. One
such procedure was proposed by Kupfer, Bers & Ram (1987) for studying two-
dimensional instabilities. It is based on mapping the real k-axis into the complex
ω-plane under the transformations ω = ωm(k), where ωm(k), m = 1, 2, . . . , are all
the unstable branches of frequency, and analysing the saddle points of ω = ωm(k),
m = 1, 2, . . . , in the complex ω-plane that are located between the image curves
under these mappings and the real ω-axis. While this technique is quite valuable for
two-dimensional dispersion relations, it is not clear how to extend this procedure to
three-dimensional instabilities.

A method for tracking the movement of saddle points which is applicable to
both two-dimensional and three-dimensional instabilities and has heretofore been
viewed as reliable is based on a continuation procedure. In the two-dimensional
case such an application starts with the saddle point km = (kmr, 0) of the function
ω(k)−Vgk on the real k-axis, where ω = ω(k) is the unstable branch of frequency, and
Vg = ∂ωr(kmr, 0)/∂kr is the group velocity of the unstable wavepacket, with ωi(kmr, 0) =
maximum for real k. The subscripts r and i of k and ω denote the real and imaginary
parts, respectively, and ωr and ωi are considered as functions of two real variables kr
and ki. The saddle point km makes the dominant contribution to the instability along
the most unstable ray x = x0 + Vgt. The tracking (continuation) procedure follows
the evolution of the saddle point starting with km = (kmr, 0), when the ray velocity
V varies continuously starting with Vg (Simmons & Hoskins 1979; Deissler 1987;
Brevdo 1995). In the three-dimensional case the procedure is similar.

In this paper, we demonstrate the inconsistency of this tracking procedure. This
observation is fundamental and could have wide implications in fluid mechanics
where simple saddle-point criteria are applied, in particular for three-dimensional
instabilities. In the three-dimensional case, the approach proposed by Kupfer et al.
(1987) does not seem to be applicable, and at the present time there is no numerical
algorithm for implementing the collision criterion for classifying three-dimensional
instabilities derived by Brevdo (1991). In fact, at present the only numerical treatment
of three-dimensional instabilities known to us is based on the continuation procedure.
However, since the continuation procedure is shown here to be inconsistent, there
exists practically no reliable numerical tool at the present time for distinguishing
between absolute and convective three-dimensional instabilities. As far as we are
aware, the inconsistency of the saddle-point treatment based on the continuation
procedure is the first observation of this type of dispersion-relation singularity in a
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Figure 1. Geometric configuration and coordinate system.

fluid mechanics problem. It is central to the thin-film problem and we will argue that
it should also be observable in experiments.

The paper is organized as follows. In § 2 the model is described and the linear initial-
value problem is formulated. A formal solution of the problem is given in Appendix
A. Procedures for determining the asymptotics of the solution based on the collision
criterion and on the saddle-point approach are discussed in § 3 and in Appendix
B. Convectively unstable wavepackets are treated in § 4, and the inconsistency of
the saddle-point procedure outlined above is shown. In § 5 computations of spatially
amplifying waves are presented, and a comparison with experiments is made. The
computed spatial growth rates are compared with the approximate results obtained
by using the Gaster transformation. In the present case, the approximation given by
the Gaster transformation is practically indistinguishable from the computed results
in the entire range of unstable modes, for all Reynolds numbers considered. Finally, in
§ 6 we summarize the findings in the paper, address further the physical implications
of the results and the potential for observability in experiments, and discuss the
implications of the saddle-point bifurcation discovered here for other calculations of
saddle points, particularly for three-dimensional instabilities.

2. Formulation
We consider a two-dimensional film flow of homogeneous incompressible viscous

fluid of viscosity µ and density ρ down an inclined flat plate having an angle θ with
the horizontal, see figure 1. The film thickness in the absence of disturbances is h,
the gas above the film is assumed to be passive, the surface tension on the interface
between the fluid and the gas is T . The basic unidirectional flow parallel to the
plate is driven by the component g sin θ of gravity along the plate. There is a basic
hydrostatic pressure gradient perpendicular to the plate induced by the component
g cos θ of gravity normal to the plate. In the coordinate system (Oxy), with x and y
being the coordinates parallel and perpendicular to the plate, respectively, and with
the origin O on the unperturbed interface, the non-dimensional basic state is given by

U(y) = 1− y2, P (y) = 2y cot θ, 0 6 y 6 1, (2.1)

where U(y) is the x-component of the velocity vector and P (y) is the pressure.
All lengths are made dimensionless with respect to h, all speeds with respect to
U0 = (ρgh2 sin θ)/2µ, and the pressure is scaled by µU0/h.
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The two-dimensional linear perturbation dynamics of the film flow is governed
by the Navier–Stokes equations linearized around the basic state (2.1) that, in the
absence of external sources and perturbations, read

Rut + R[U(y)ux +U ′(y)v] = −px + ∇2u, (2.2a)

Rvt + RU(y)vx = −py + ∇2v, (2.2b)

ux + vy = 0, (2.2c)

(y, x, t) ∈ (0, 1)×R×R+. (2.2d)

Here, u and v are the x- and y-components of the perturbation velocity, respectively, p
is the perturbation pressure, R = U0hρ/µ = ρ2gh3sin θ/(2µ2) is the Reynolds number,
∇2 = ∂2/∂x2+∂2/∂y2, and the prime denotes d/dy. When no disturbances are imposed
on the boundaries, (i) the interface y = η(t, x) is composed of flow trajectories (the
kinematic condition), (ii) the shear stress at the interface is zero, (iii) the normal stress
at y = η(t, x) is balanced by the surface tension times the curvature (two dynamic
conditions), and (iv) the fluid velocity vanishes at the plate y = 1 (the non-penetration
and non-slip conditions). These conditions linearized around the basic state (2.1) are

ηt +Uηx − v = 0 at y = 0, (2.3a)

uy + vx +U ′′η = 0 at y = 0, (2.3b)

2vy − p− P ′η + 2Wηxx = 0 at y = 0, (2.3c)

u = 0, v = 0 at y = 1. (2.3d)

In (2.3c), W = Γ/(gh2 sin θ) is the Weber number, with Γ = T/ρ.

We introduce the stream function Ψ = Ψ (y, x, t). Elimination of pressure p in
(2.2a, b) and substitution of u = ∂Ψ/∂y, v = −∂Ψ/∂x result in the equation[

R

(
∂

∂t
+U

∂

∂x

)
∇2 − RU ′′ ∂

∂x
− ∇4

]
Ψ = 0. (2.4)

From (2.1) and (2.3b),

η = (uy + vx)/2, at y = 0. (2.5)

We substitute (2.5) into (2.3a) and obtain, in terms of Ψ,(
∂

∂t
+

∂

∂x

)(
∂2Ψ

∂y2
− ∂2Ψ

∂x2

)
+ 2

∂Ψ

∂x
= 0 at y = 0. (2.6)

In order to eliminate η in (2.3c) we differentiate it once with respect to x, eliminate
px in the resulting equation by using px from (2.2a) evaluated at y = 0, and make use
of (2.5) to obtain

∂3Ψ

∂y3
+

(
cot θ

∂

∂x
−W ∂3

∂x3

)(
∂2Ψ

∂y2
− ∂2Ψ

∂x2

)

+ 3
∂3Ψ

∂x2∂y
− R ∂

∂y

(
∂Ψ

∂t
+
∂Ψ

∂x

)
= 0 at y = 0. (2.7)
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The stream function formulation of (2.3d) is

Ψ = 0,
∂Ψ

∂y
= 0 at y = 1. (2.8)

We are interested in the linear dynamics triggered by disturbances that are localized
in space, in the physical sense, that is, when vorticity sources, perturbations on the
interface and on the plate, and an initial perturbation in the flow are all negligibly
small, for large |x|. Note that the stream function Ψ is not necessarily localized in
space, for every given localized-in-space velocity field (u, v). In order to account for the
localization assumption the governing equation (2.4) and the conditions (2.6)–(2.8) can
be written in terms of the velocity component v by differentiating each of them with
respect to x. The corresponding perturbations of the resulting problem are localized in
space. We arrive, therefore, at the formulation of the perturbed initial-value problem
(IVP) for v = v(y, x, t) as follows:[

R

(
∂

∂t
+U

∂

∂x

)
∇2 − RU ′′ ∂

∂x
− ∇4

]
v = RG(y, x, t),

0 < y < 1, −∞ < x < ∞, t > 0, (2.9a)

v(y, x, 0) = v0(y, x), 0 6 y 6 1, −∞ < x < ∞, (2.9b)(
∂

∂t
+

∂

∂x

)(
∂2v

∂y2
− ∂2v

∂x2

)
+ 2

∂v

∂x
= f1(x, t) at y = 0, (2.9c)

∂3v

∂y3
+

(
cot θ

∂

∂x
−W ∂3

∂x3

)(
∂2v

∂y2
− ∂2v

∂x2

)
+3

∂3v

∂x2∂y
− R ∂

∂y

(
∂v

∂t
+
∂v

∂x

)
= f2(x, t) at y = 0, (2.9d)

v(1, x, t) = f3(x, t),
∂v

∂y
(1, x, t) = f4(x, t), −∞ < x < ∞, t > 0. (2.9e,f )

The functions G(y, x, t), v0(x, t), f1(x, t), f2(x, t), f3(x, t), f4(x, t) in (2.9) represent
externally imposed perturbations and are assumed to have finite support in (x, t)
in order to ensure convergence of the integrals appearing in the treatment. The
assumption of finite support will be subsequently relaxed to include all functions for
which the formalism goes through, in particular, the functions that are physically
localized in space and oscillatory in time (Briggs 1964; Bers 1973; Brevdo 1988). A
formal solution of the IVP (2.9) is given in Appendix A.

3. Determination of the response to a localized disturbance
We are interested in the long-time asymptotic behaviour of v(y, x0 + Vt, t) given in

(A 26), which is the solution of the IVP (2.9) along the ray x = x0 +Vt, in the unstable
case. Since the integral in (A 26) has an analogous form to that of the integral in
(A 24), the evaluation of the asymptotics is similar, for all V . We sketch the procedure
for evaluating the asymptotics for V = 0, that is, the asymptotics of v(y, x0, t), when
t → ∞. In its present form, the procedure was developed in the plasma physics
literature (Briggs 1964; Bers 1973) for studying absolute and convective instabilities
and spatially amplifying waves. It is based on the analytic continuation of the inverse
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Fourier integral in (A 24)

R(x0, ω) =

∫ ∞
−∞

T (y, k, ω)

D(k, ω)
eikx0 dk (3.1)

in the strip {ω | 0 6 Im ω 6 σ} on the complex ω-plane. If the continuation of
R(x0, ω) starting from the Bromwich contour {ω | Im ω = σ} down to and slightly
below the real ω-axis is possible then the solution v(y, x0, t) decays exponentially as
t → ∞. On the other hand, if the analytic continuation of the function R(x0, ω) in
this strip has singular points then each of these points contributes to the growth of
v(y, x0, t).

Determination of the singular points of R(x0, ω) located between the Bromwich
contour and the real ω-axis reduces eventually to analysing the multiple k-roots of
the dispersion relation function D(k, ω), for ω with 0 < Im ω < σ, that satisfy the
collision criterion as follows. Let (k0, ω0) be such a root. We assume for simplicity that
it is a double root in k of D(k, ω0) = 0, which is the most common case. Then in the
limit Im (ω − ω0)→ ∞, Re (ω − ω0) = 0, the root k0 splits into two roots k = k1(ω)
and k = k2(ω), with one of the roots moving to the upper half and the other to the
lower half of the complex k-plane. In other words, when ω moves from above the
Bromwich contour along the vertical line down to ω0, which we denote by ω ↘ ω0,
the k-roots k1(ω) and k2(ω) originate in this movement on opposite sides of the real
k-axis and collide at k = k0, for ω = ω0. This kind of a collision is called pinching
of the deformed Fourier contour because the function R(x0, ω) cannot be continued
analytically in ω = ω0 by deforming the integration contour in (3.1), as it is ‘pinched’
from above and below by two k-roots that collide at k = k0.

The dominant contribution to the asymptotics of the solution comes from the
multiple k-root of D(k, ω) = 0 that satisfies the collision criterion and has maximum
imaginary part of ω among all such roots. For V 6= 0, the same continuation procedure
applies to the function

R(x0, ω + Vk) =

∫ ∞
−∞

T (y, k, ω + Vk)

D(k, ω + Vk)
eikx0 dk, (3.2)

and the multiple k-root of D(k, ω + Vk) = 0 satisfying the collision criterion and
possessing the largest Im ω makes the dominant contribution to the asymptotics.
Let, for the ray x = x0 + Vt, this root be (k(V ), ω(V )). Then the asymptotics of the
solution along this ray, as t→∞, is equal at the leading order to

v(y, x0 + Vt, t) ∼ C (y, k(V ), ω(V )) tseωi(V )te−iωr(V )te−ki(V )x0eikr(V )x0 , (3.3)

where the indices r and i denote the real and the imaginary parts, respectively. In
(3.3), C (y, k(V ), ω(V )) is complex valued and independent of t and x0, and s ∈ R is a
rational number that depends on the number and multiplicity of the colliding k-roots
(cf. Brevdo 1988). In the case of two simple colliding roots, s = − 1

2
. The formula

(3.3) is valid provided the roots of the numerator T (y, k, ω + Vk) of the integrand in
(3.2) do not cancel the contributing roots of the denominator D(k, ω + Vk), for all
y ∈ [0, 1] and for all admissible external perturbations. For the present flow no such
cancellation of roots was found.

A search for multiple k-roots of DV (k, ω) ≡ D(k, ω + Vk) = 0 that satisfy the
collision criterion can be carried out by following the images of the horizontal lines

Lσ = {ω | Im ω = σ,−∞ < Re ω < ∞} (3.4)

on the k-plane under the transformations k = kn(ω), n = 1, 2, . . . , starting with σ > σm,
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and decreasing σ. Here k = kn(ω), n = 1, 2, . . . , are the k-roots of DV (k, ω) = 0, for
a given ω, and σm is the maximum temporal growth rate, see (A 25). For σ > σm,
when the lineLσ is a Bromwich contour, images located on opposite sides of the real
k-axes are identified, and collisions of such images for decreasing σ are detected. The
collision of images that takes place because of a collision of k-roots is characterized
by a change of pattern of the colliding curves (see Brevdo 1988).

Note that at the point of collision k0 = k(ω0) of two simple k-roots (which is the
most common case) the function ωV (k), satisfying ωV (k0) = ω0 and DV (k, ωV (k)) ≡ 0 in
a vicinity of k0, has a simple saddle point. That is, dωV (k0)/dk = 0, d2ωV (k0)/dk

2 6= 0,
provided ∂DV (k, ω)/∂ω 6= 0 at (k0, ω0). Let ω(k) = ωV (k) + Vk in a vicinity of k0

where ωV (k) is defined. Then, in this vicinity, D(k, ω(k)) ≡ 0. Hence, the frequency
ω as a function of k, obtained as an ω-root of D(k, ω) = 0 close to (k0, ω0), satisfies
dω/dk|k=k0

= V .
The movement of images in the k-plane can be followed by computing numerically

images of a discrete dense set of points on Lσ. For this purpose k-roots of D(k, ω +
Vk) = 0 have to be computed for a discrete set of ω on Lσ, which is a time-
consuming procedure because it requires solving a boundary-value problem for the
Orr–Sommerfeld equation in which the wavenumber k appears to the fifth power (see
the operator B2 in (A 3)). On the other hand, in the same problem the frequency ω
appears linearly, so computing ω-roots of the equation D(k, ω + Vk) = 0, for a given
k, requires considerably less computer time than computing its k-roots, for a given
ω. This fact has stimulated an application of simple techniques based on computing
ω as a function of k, for distinguishing between absolute and convective instabilities.
One of these techniques that has been viewed until now as fairly reliable is presented
in Appendix B.

The technique is based on computing the saddle point of the most unstable ray
x = x0 +Vgt and following the movement of the saddle point in the complex ω-plane
when V varies continuously starting with Vg. As a result one obtains an interval of
ray velocities V ∈ (Vl, Vr) for which the saddle point is unstable. (Here and further
in the text, the subscripts l and r used with the variable V denote the left and the
right points of an interval of velocities, respectively. The subscript r used with k and
ω denotes the real part.) It is then assumed that (i) the interval (Vl, Vr) consists of
unstable ray velocities, and (ii) for each ray velocity this procedure computes the
maximum growth rate. The assumption (ii) implies that outside the interval (Vl, Vr)
all ray velocities are stable.

The first part of this assumption (i) can be substantiated. Indeed, the saddle point
of ωV (k) connected by continuity in V with the saddle point (kmr, 0) from which the
procedure starts satisfies the collision criterion due to continuity. Therefore, all V in
the interval (Vl, Vr) are unstable ray velocities. The second part of the assumption (ii)
asserts that the traced saddle point remains dominant, for all V . This may be correct in
some cases. See, for instance, Simmons & Hoskins (1979) and Brevdo (1988) where the
stability analysis of the Eady model was performed using the saddle point approach
and the collision criterion, respectively, with the same results. Also, the saddle point
analysis applied in Brevdo (1995) to the Blasius boundary layer gave the interval of
unstable rays (Vl, Vr) that agreed well with the experimental results of Gaster & Grant
(1975). However, in general, this might not be the case. In the present investigation
we applied both methods to the film flow and discovered considerable discrepancies
of the results because the saddle point approach failed to recover a significant portion
of the interval of unstable rays. This occurred due to a bifurcation of the contributing
most unstable saddle point. The results are presented in the next section.
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Figure 2. Most unstable branch of ω as a function of kr: (a) growth rate ωi, (b) angular frequency
ωr. Values of the Reynolds number: R = 10 (- -), Rc (–), 20 (+), 40 (×), 60 (�), 100 (M), and
200 (N). Values of the Weber number: W = 104.4 (- -), 77.88 (–), 65.8 (+), 41.46 (×), 31.6 (�),
22.5 (M), and 14.18 (N). Parameter values: θ = 4.6◦, ν = 5.02 × 10−6 m2 s−1, T = 69 × 10−3 N m−1,
and ρ = 1130 kg m−3.

4. Convectively unstable wavepackets
Before proceeding to the analysis of wavepackets we make some remarks concerning

the temporal stability properties of the flow. Floryan, Davis & Kelly (1987) have
performed computations of the temporal stability of the flow for small angles and
found out that, in this case, two unstable modes exist: a shear mode and a surface
mode. For very small angles of less than about 0.5′, a destabilization of the flow
occurs as a result of a shear mode instability. For angles greater than about 0.5′, a
destabilization is caused by a surface mode instability, and for moderate unstable
values of the Reynolds number no unstable shear mode is present. For the surface
mode, in the long-wave limit k = kr → 0, one has

ω = 2kr + i 2
15

(−5 cot θ + 4 R)k2
r + o(k2

r ). (4.1)

Hence, in this limit,

Rc = 5
4

cot θ (4.2)

is the critical Reynolds number. Computations of Floryan et al. (1987) showed that
Rc given in (4.2) is the critical Reynolds number of the flow when destabilization
is caused by a surface mode instability because such a destabilization occurs for
infinitely long waves. In figure 2, computations of the unstable branch of ω as a
function of kr, presented for several values of the Reynolds number, illustrate this
destabilization. The computations are performed by using a pseudo-spectral method
to discretize the homogeneous boundary-value problem associated with the problem
(A 2) (cf. Orszag 1971). The physical parameter values in figure 2 are those used in
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the experiments of Liu et al. (1993). The critical Reynolds number for the case shown
in this figure is Rc = 15.54. From figure 2(a), it is clearly seen that the growth rate ωi
satisfies quantitatively (4.1) in the unstable case only for very small kr. Since the size
of the interval of the unstable wavenumbers in this figure is of order one, for R as
low as 20, the long-wave approximation is not suitable for investigating wavepacket
asymptotics in this flow.

The analysis of wavepackets in this flow was performed using the approach based
on the collision criterion. The results were compared to the results of a saddle-point
treatment described in Appendix B. In the computations, we used the τ-method
and independently the Chebyshev collocation method applied for discretizing the
homogeneous boundary-value problem associated with the problem (A 2) (cf. Orszag
1971). For solving the resulting algebraic eigenvalue problem in which k appears
to the fifth power, a companion matrix method was used (Bridges & Morris 1984;
Pearlstein & Goussis 1988).

Most of the computations were carried out for the parameter values used in
the experiments of Liu et al. (1993), see the caption of figure 2. At the same time
other cases were also treated, including those for which stability computations were
performed by Chang & Demekhin (1996). In all unstable cases considered the film
flow was found to be absolutely stable. In particular, we found that no transition
from convective to absolute instability occurs for the value of the Reynolds number
Rc/a = Rc+(6.7 W )1/3 predicted by the long-wave analysis of Benney (1966), where Rc
is the critical Reynolds number given by (4.2). For the experiments of Liu et al. (1993),
Rc/a ≈ 23. As already mentioned, the inadequacy of the long-wave approximation
for the wavepacket analysis is due to the strong dispersion of waves with moderate
wavelengths, see figure 2(a).

An illustration of the movement of the images of the lines Lσ under the transfor-
mations k = kn(ω), D(kn(ω), ω) ≡ 0, n = 1, 2, . . . , located close to the k-axis is given
in figure 3. In figure 3(a), there are three images above and two images below the
real k-axis, for σ = ωi = 0.02. The image 1 that lies closest to the axis is shown to be
above the axis in the close-up view in figure 3(b). In figure 3(c), for σ = ωi = 0, and
in the close-up view in figure 3(d), part of the image 1 is seen to cross the real k-axis,
and there is no collision of images coming from opposite sides of the axis. Therefore,
the flow is absolutely stable.

Computations of the growth rate ωi(V ), the oscillatory frequency ωr(V ), the local
spatial amplification rate −ki(V ) and the wavenumber kr(V ) across the wavepacket
were performed by using the collision criterion, for various values of the Reynolds
number R. The results of the computations are presented in figure 4. For each
Reynolds number R = 20, 40, and 60, there is only one unstable branch of ωi(V ). In
all these cases, the unstable branch is also recovered by using the procedure based
on tracking the saddle point as described in Appendix B. However, for R = 100 and
200, the situation in this respect is dramatically different. We describe here in detail
the case R = 200 where the deviation of the results of the saddle point treatment
from the results based on the collision criterion is more pronounced than in the case
R = 100.

For R = 200, the analysis based on the collision criterion produces two unstable
branches of ωi(V ), marked in figure 4(a) with N (branch I) and H (branch II). The
treatment based on the saddle point approach produces only one unstable branch of
ωi(V ), branch I in figure 4(a). The second unstable branch, branch II, is not connected
by continuity in V with the saddle point corresponding to the most unstable ray.
The same symbols are used in figure 4(b–d). The saddle point approach gives the
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Figure 3. Movement of the images of the lines Lσ under the transformations k = kn(ω), n = 1, 2, . . . , for R = 40.
See figure 2 for the other parameter values.
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Figure 4. (a) Growth rate ωi(V ), (b) oscillatory frequency ωr(V ), (c) local spatial amplification rate with the sign minus ki(V ), and (d) wavenumber
kr(V ), as functions of the ray velocity V . Values of the Reynolds number are R = 20 (+), 40 (×), 60 (�), 100 (M and O), and 200 (N and H, referred
to as branches I and II in the text). See figure 2 for the other parameters values.
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interval of unstable rays (V I
l , V

I
r ) = (1.119, 1.482), with the length V I

r − V I
l = 0.363.

The correct interval obtained using the collision criterion is (V II
l , V

I
r ) = (0.97, 1.482),

its length is V I
r −V II

l = 0.512. Therefore, the correct interval is more than 40% wider
than the interval obtained with the saddle point treatment. Here the superscripts
mark the branches, and, we recall, the subscripts l and r of V correspond to the
left and right points of the intervals, respectively. We see, therefore, that the saddle
point treatment fails to recover the whole subinterval (V II

l , V
I
l ) = (0.97, 1.119) of the

interval of unstable rays of the length V I
l − V II

l = 0.149. Consequently, its prediction
of the length of the unstable interval is made with a relative error of 0.29, which is
certainly not a negligible failure.

The two branches I and II correspond to collisions of images of the lines Lσ at
different points in the k-plane, for the same value of V . This is demonstrated with
two figures, figure 5 and figure 6. Figure 5 is for V = 1.16 which is slightly greater

than the velocity Ṽ = 1.1595 at which the growth rates of both branches coincide,

that is, ωI
i (Ṽ ) = ωII

i (Ṽ ). (See figure 7 for a location of Ṽ .) For ωi = 0.01, three images
marked with 1, 2 and 3 participating in the collisions are shown in figure 5(a). Image
1 originates from above the real k-axis, while images 2 and 3 originate from below
the axis, for ωi = 0.02, which is greater than the maximum of ωi for real k. In figure
5(b), for ωi = 0.0079, image 1 coming from above the real k-axis collides with image
3 coming from below the real k-axis at two points symmetric with respect to the
imaginary k-axis. One of these points is marked with kI . It is a saddle point whose
contribution lies on branch I in figure 4; it is connected by continuity in V with the
saddle point giving the contribution to the most unstable ray.

Following this collision there is a change of pattern of the images seen in figure
5(c), for ωi = 0.0078. In this figure, another collision is seen. It is a collision of image 2
with a modified image 1. Clearly, this collision occurs between k-roots originating on
opposite sides of the real k-axis, because the colliding portion of the modified image
1 comes from above the real k-axis. A change of pattern of the images following this
collision is seen in figure 5(d). One of the two points of collision having the same
imaginary part is marked with kII . A contribution from this point belongs to branch
II in figure 4. The saddle point kII is not connected by continuity in V with the saddle
point of the most unstable ray. In figure 5(e) the trajectories of the colliding k-roots
in the complex k-plane, when ωi varies from ωi = 0.02 down to ωi = 0, are plotted for
both collisions, with arrows indicating the movement of the roots. For each collision,
the colliding roots originate on opposite sides of the real k-axis.

In figure 6, the pinching process is shown for the ray velocity V = 1.15 which is
smaller than Ṽ . Stages of the pinching process are shown in figure 6 in a manner
similar to that of figure 5. This time, a collision of images 1 and 2 at the point
kII belonging to branch II in figure 4 occurs first in the process, for ωi = 0.0073,
and following it a collision at kI belonging to branch I takes place, for ωi = 0.0062,
see figures 6(b) and 6(c), respectively. The trajectories of the colliding k-roots in the
complex k-plane plotted in figure 6(e) for 0.02 > ωi > 0 show that, for each collision,
the colliding roots originate on opposite sides of the real k-axis. Each branch I and II
is making an additive contribution to the asymptotics of the wavepacket of the form
(3.3). Hence, for the velocities V in the interval (V I

l , V
II
r ) for which both branches

are unstable, the asymptotics of the growing part of the wavepacket along rays with
these velocities is a sum of two growing terms of the form (3.3), with s = − 1

2
.

A close-up view of branches I and II in figure 4 near the intersection point Ṽ of the
curves ωi = ωI

i (V ) and ωi = ωII
i (V ) is shown in figure 7. In each of figures 7(a)–7(d),

a vertical dashed line is drawn for the ray velocity V = Ṽ at the intersection point,
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Figure 5. Pinching process in the complex wavenumber plane (kr, ki) for V = 1.16, R = 200,
W = 14.18, and θ = 4.6◦: (a) before the collisions; (b) collision corresponding to branch I in
figure 4, kI = (0.19,−0.165) and the corresponding ωI = (0.015, 0.0079); (c) collision correspond-
ing to branch II in figure 4, kII = (0.045,−0.048) and the corresponding ωII = (0.015, 0.0078);
(d) after the collisions; (e) trajectories of the colliding k-roots for both collisions when ωi decreases
in both cases from 0.02 to 0; the arrows indicate the movement of the k-roots before and after the
collision.
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a vertical dashed-dotted line is drawn through the left margin V I
l of branch I, and a

vertical dotted line is drawn through the right margin V II
r of branch II. For V > Ṽ ,

branch I is dominant, while for V < Ṽ , branch II dominates the growth. In figures
7(a)–7(d), the curves representing the dominant branch are drawn in continuous lines,
the curves of the subdominant branch are drawn in dashed lines.

At V = Ṽ , the dominant growth rate ωi(V ) (figure 7a) is a continuous function of V .
However, the corresponding oscillatory frequency ωr(V ) (figure 7b), the local spatial
amplification rate with the minus sign ki(V ) (figure 7c), and the wavenumber kr(V )

(figure 7d), all of the dominant branch, are discontinuous at V = Ṽ . In particular,
the value of the wavenumber kr(V ) has a jump at this point from about 0.175 on

branch I to about 0.042 on branch II. This means that, for V decreasing through Ṽ ,
the local wavelength of the dominant part of the wavepacket 2π/kr(V ) experiences at

V = Ṽ an abrupt increase by a factor of about 4. For the values of V in the interval

(V I
l , Ṽ ), branch I is still unstable, though not dominant. Its wavelength is present in

the growing wavepacket on this interval of V . However, on the interval of unstable
V to the left of V I

l , i.e. on (V II
l , V

I
l ), there is only one unstable branch, branch II.

On this interval the wavelength of branch I is no longer present in the growing part
of the wavepacket, and the maximum wavenumber is about 0.033. Therefore, as V

decreases starting with Ṽ down to and through V I
l , the wavenumber of the growing

asymptotics decays from 0.175 to 0.033 implying an increase of the wavelength on
this interval of V by a factor of about 5.3. We expect that such a strong increase

of the wavelength across the interval of ray velocities (V I
l , Ṽ ) ≈ (1.115, 1.159) of the

length of about 0.044 should be observable in experiments.

Interestingly, when V increases starting with V = Ṽ , branch II ceases to exist
beyond the value of V = V II

r of about 1.21. We observe that such a situation is
not possible, when ω(k) is analytic, because a branch of solutions of dω(k)/dk =
V satisfying the collision criterion depends continuously on V and hence cannot
disappear beyond whatever V . Therefore, the reason for such a behaviour of branch
II lies in the fact that, in the present case, ω = ω(k) is a multi-valued function
possessing branch point singularities in the k-plane. When V increases towards V II

r ,
the point k at which dω(k)/dk = V holds for branch II moves towards such a
singularity of ω = ω(k), say k = kIIright, and reaches it for V = V II

r . As V increases

beyond V II
r , the equation dω(k)/dk = V no longer has solutions lying on branch

II and satisfying the collision criterion because the structure of the branches of the
multi-valued function ω(k) changes at k = kIIright. This conclusion was substantiated
by examining the patterns of the images of the lines Lσ in the k-plane, for V to
the left and to the right of V II

r . The point V II
r appears as a bifurcation point, with

V being viewed as a bifurcation parameter. Indeed, for V I
r > V > VII

r there exists
only one unstable branch, branch I. When V decreases through V II

r this first branch
is present as before and in addition the second branch, II, appears. Also V I

l is a
bifurcation point because there are two unstable branches, I and II, on the interval
V ∈ (V I

l , V
I
l + ε), where ε > 0 is small, while there is only one such branch, II, on

the interval V ∈ (V I
l − ε, V I

l ). We performed checks for the values of V < VII
l and

found no indication that branches I and II are connected where the saddle points
have negative growth rates.

In figure 8 the loci of the contributing unstable saddle points in the k-plane,
kI,II (V ), are shown for both branches I and II, for V on the interval [VII

l , V
I
r ]. The

two loci are disconnected. From the point of view of the saddle point technique
described in Appendix B we can deduce that, for each V belonging to the interval
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The dominant branch is drawn in continuous lines, the subdominant branch is drawn in dashed
lines. See figure 2 for the other parameter values.

where both branches I and II are unstable, i.e. V ∈ (VI
l , V

II
r ), the equivalent steepest-

descent contour passes through two contributing saddle points: one from branch I
and the other one from branch II. Our computations show that at the saddle point
of branch I the steepest descent contour is approximately parallel to the real k-axis,
i.e. to the contour in (B 1). On the other hand, at the saddle point of branch II
the steepest descent contour is approximately perpendicular to the contour in (B 1).
This observation emphasizes that the orientation of the steepest descent path at
a saddle point contains no information concerning the existence of the equivalent
steepest-descent contour.

5. Spatially amplifying waves
Since the film flow on an inclined plane is absolutely stable for all values of the

parameters considered, linear spatial patterns can be generated in it by applying a
spatially localized periodic-in-time forcing with small amplitude. Such patterns in an
absolutely stable but convectively unstable flow have the form of spatially amplifying
waves that possess small amplitudes in a vicinity of the location of application x = x0

of the periodic forcing and amplify exponentially with the distance |x− x0| from this
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location in the positive or negative (x−x0)-direction. For sufficiently large |x−x0|, the
amplitude of a linear spatially amplifying wave becomes large, so that nonlinear effects
take over and govern its further development in space. Secondary instabilities appear,
and eventually transition to turbulence takes place at a certain distance from x0. The
structure of the spatially amplifying linear waves is important for understanding the
evolution of secondary instabilities and for estimating the distance from x0 to the
area of development of a turbulent state.

5.1. Formalism and admissible perturbations

For studying spatially amplifying waves in the present flow, we assume that the
component v(y, x, t) is perturbed externally on the plate y = 1, with all other external
perturbations and the initial disturbance being zero. More general cases of external
perturbations can be treated similarly. The only non-zero external perturbation is
given by

v(1, x, t) = f3(x, t) = r(x− x0)e
−iω0t, (5.1)

where r(x) is a function with finite support, x0 is fixed, and ω0 ∈ R is the frequency
of the forcing. This is a strictly harmonic-in-time perturbation. Forcing the flow by
a perturbation of the form (5.1) is referred to as signalling. From (A 21)–(A 23) it
follows that in this case

T (y, k, ω) =
1

ω − ω0

(ω − k)[v′2(1, k, ω)v1(y, k, ω)− v′1(1, k, ω)v2(y, k, ω)]r(k)e−ikx0

≡ P (y, k, ω)r(k)

ω − ω0

e−ikx0 , (5.2)

and the solution (A 24) takes the form

v(y, x, t) =
1

4π2

∫ iσ+∞

iσ−∞
e−iωt

ω − ω0

dω

∫ ∞
−∞

r(k)
P (y, k, ω)

D(k, ω)
eik(x−x0)dk. (5.3)

We do not have a proof of convergence of the integral in (5.3); and the difficulty
here is that no perturbation-dependent function enters P (y, k, ω) that can be chosen
in such a way as to obtain in a straightforward manner the desired asymptotics of
the integrand at infinity in ω in the integration domain.

To assure convergence, we proceed like in Brevdo (1998) by assuming that the
perturbation function f3(x, t) has the Fourier–Laplace transform of the form

f3(k, ω) =
A(k)B(ω − ω0)

ω − ω0

, (5.4)

where A(k) is an entire function that decays rapidly at infinity on the real k-axis, and
B(ω − ω0) decays rapidly at infinity in the strip {ω | ω ∈ C,−c < Im ω < σm}, for
some positive c. Then the perturbation satisfies

f3(x, t) = A(x)[−iB(0)e−iω0t + O(e−εt)], (5.5)

i.e. it is a slightly perturbed-in-time harmonic oscillator, with a deviation decaying
exponentially for large t. Therefore, for large t, the external perturbation (5.5) can be
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Figure 9. (a) Growth rate −ki and (b) wavenumber kr of spatially amplifying waves as func-
tions of signalling frequency ωr. The parameter values are: θ = 4.6◦, ν = 5.02 × 10−6 m2 s−1,
T = 69 × 10−3 N m−1 and ρ = 1130 kg m−3. Computations are done for R = 10 (- -), Rc (–), 20
(+), 40 (×), 60 (�), 100 (M), and 200 (N). Values of the Weber number: W = 104.4 (- -), 77.88 (–),
65.8 (+), 41.46 (×), 31.6 (�), 22.5 (M), and 14.18 (N).

viewed for all purposes as harmonic in time. The solution is now given by

v(y, x, t) =
1

4π2

∫ iσ+∞

iσ−∞
B(ω − ω0)e

−iωt

ω − ω0

dω

∫ ∞
−∞

P (y, k, ω)A(k)

D(k, ω)
eik(x−x0)dk, (5.6)

and the integral here can be made convergent by choosing A(k) and B(ω − ω0) that
possess the desired decay properties at infinity of the integration domain.

According to the mathematical formalism of spatially amplifying waves in the one-
dimensional case (Briggs 1964; Bers 1973), contributions to the growing asymptotics
of the solution (5.6), for t → ∞, (x − x0) → ∞, come from every k-root k = k(ω0)
of D(k, ω0) = 0 that satisfies the following causality condition. For ω ↘ ω0, the
root k = k(ω) moves from above to below the real k-axis. This means that for ω
above the Bromwich contour, the root is in the upper half of the k-plane; in the
movement ω ↘ ω0 the root crosses the real k-axis an odd number of times. Only
k-roots crossing the real k-axis in this fashion contribute to the spatial amplification.
For t → ∞, (x − x0) → −∞, contributions come from the k-roots that cross the real
k-axis from below to above in the movement ω ↘ ω0.

For the case t → ∞, (x − x0) → ∞, let a contributing crossing root k = k(ω)
reach a point k0 at the end of its trajectory, when ω ↘ ω0, i.e. k0 = k(ω0). Then the
contribution from this root to the asymptotics of the solution (5.6) in this case is
given by

CS(k0) = C1(y, k0, ω0)e
ik0(x−x0)e−iω0t, (5.7)

where C1(y, k0, ω0) does not depend on x and t. The k-root with maximum Im k(ω0)
among all the crossing roots satisfying the causality condition makes the dominant
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Figure 10. Growth rate −ki of spatially amplifying waves versus signalling frequency ωr for
R = 4100; sr – surface mode branch, sh – shear mode branch. The parameter values are: θ = 4′,
ν = 5.02× 10−6 m2 s−1, T = 69× 10−3 N m−1 and ρ = 1130 kg m−3.

contribution to the asymptotics, for t→∞, (x−x0)→∞. For t→∞, (x−x0)→ −∞,
the dominant contribution comes from the crossing root with maximum −Im k(ω0).

5.2. Numerical results

In the present case no spatially amplifying waves exist for (x − x0) → −∞. For all
supercritical Reynolds numbers there are spatially amplifying waves that amplify in
the positive x-direction, i.e. when (x− x0)→∞. Depending on the Reynolds number
R and the angle θ there are amplifying waves of the shear mode or of both the shear
and the surface modes. In figure 9 the results of computations of the spatial growth
rate −ki and the wavenumber kr as functions of signalling frequency ωr = ω0 are
presented for several values of the Reynolds number. For the angle θ = 4.6◦ used
in the computations the minimum critical Reynolds number of the shear mode over
all Γ is well above 1000, i.e. well above the maximum Reynolds number R = 200
in figure 9. Hence, spatially amplifying waves of only the surface mode are present.
Neutral curves for the shear and surface modes for small values of the angle θ and
different values of the Weber number (surface tension number) were computed by
Floryan et al. (1987).

In terms of the expression (5.7), ωr in figure 9 corresponds to ω0, and kr + iki is k0.
For the case when the temporal and the spatial growth rates are small, the following
transformation relating approximately these growth rates was proposed by Gaster
(1962):

−ki(S) = ωi(T )/
∂ωr

∂kr
, (5.8)

where S and T mean that the values are obtained in the spatial and the temporal
stability analyses, respectively. The Gaster transformation is widely used for com-
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puting spatial growth rates of normal modes by using computed temporal growth
rates. This saves considerable computation time because spatial stability computa-
tions are much more time consuming than temporal stability ones. In Brevdo (1992b),
a mathematical example was presented in which all the premises of the Gaster (1962)
analysis were fulfilled but the formula (5.8) gave incorrect results, indicating that
the Gaster transformation should be used with caution. Since in the present analysis
we performed both the temporal and the spatial stability computations, we used the
opportunity of checking the applicability of the Gaster formula (5.8). The outcome
of this check is quite interesting. It turns out that the formula (5.8) not only gives a
good approximation for the spatial growth rate when the growth rates are very small,
but moreover, the dependence of the spatial growth rate given by (5.8) on the real
part of frequency ωr is practically indistinguishable from the results obtained in the
direct spatial stability computations, for the entire range of unstable frequencies. In
the present case, the Gaster transformation transforms the curves in figure 2(a) in the
entire domain of unstable kr for all physical purposes practically identically into the
corresponding curves in figure 9(a). Except for small vicinities of the points where
the spatial growth rates in figure 9(a) are zero, the relative errors between the results
computed by using the Gaster transformation and the results of the direct spatial
stability computations are less than 10−3.

In figure 10 the spatial growth rate −ki is shown as a function of the signalling
frequency ωr for R = 4100 and θ = 4′. The notation is similar to that in figure 9. This
Reynolds number is greater than the critical Reynolds numbers for both the surface
and the shear modes and, hence, two corresponding branches of amplifying waves are
present. The surface mode branch is unstable for the source frequencies in the range
0 < ωr < 0.667, whereas the maximum amplification rate max(−ksri ) = 0.000247 is
attained at a rather low frequency ωr = 0.020. The shear mode branch is unstable
in a significantly narrower range 0.385 < ωr < 0.435. The maximum amplification
rate of this branch max(−kshi ) = 0.000945 attained at ωr = 0.41 is almost four times
greater than that of the surface mode branch. This maximum is ten times greater
than the maximum amplification rate of the surface mode branch in the domain
0.385 < ωr < 0.435 of unstable frequencies of the shear mode branch. This means
that when the frequency of forcing ωr increases starting with the left point of the
domain 0.385 < ωr < 0.435 towards the point ωr = 0.41, i.e. increases by about 6.5%,
the growth rate of the most unstable spatially amplifying wave increases by a factor
of about ten. We argue that such an abrupt increase of the growth rate should be
observable in experiments if the flow can be kept laminar up to R = 4100.

5.3. Comparison with experiments

Our computations are in fairly good agreement with the experimental results of
Liu et al. (1993). In figure 11, we compare the computed growth rate and phase
velocity with the measurements for θ = 4.6◦, R = 23 and W = 62. The growth rate
in figure 11(a) is in good agreement with the experiments. In particular, the most
unstable wavenumber and the cutoff wavenumber are correctly predicted. The shape
of the phase velocity curve in figure 11(b) is similar to the distribution shape of the
measurements with a deviation less than 2.5%.

The comparison in figure 12(a) of the computed cutoff frequency with the mea-
surements at θ = 5.6◦ shows good agreement. In figure 12(b) a comparison is made
between the computed and measured cutoff frequencies, and between the computed
and measured most rapidly amplified frequencies at θ = 4.6◦. Although there is a
discrepancy between the cutoff frequencies, the shape delineated by the measurement
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Figure 11. (a) Spatial growth rate −ki and (b) phase velocity as functions of wavenumber kr .
Measurements (�) are taken from figure 14 in Liu et al. (1993). The parameter values are θ = 4.6◦,
ν = 4.89× 10−6 m2 s−1, T = 69× 10−3 N m−1 and ρ = 1130 kg m−3.

points parallels the shape of the computed curve. We attribute the discrepancy to a
possible uncertainty while measuring a response to an oscillatory forcing when the
amplification rate is very small. The most rapidly amplified frequencies compare well.

6. Concluding remarks
In this paper we have treated analytically and numerically the linear stability

problem for localized disturbances in a film flow on an inclined plane. The formalism
of wavepackets and spatially amplifying waves was implemented numerically. We
have shown that, for a wide range of supercritical values of the Reynolds number
relevant to experiments, the film flow on an inclined plane is convectively unstable
but absolutely stable, and studied in detail the structure of unstable wavepackets, for
a parameter case relevant to experiments. The convective nature of instability of the
flow was established previously experimentally and supported by numerical results.
However, no wavepacket analysis has been performed until now. Our investigation of
the structure of the unstable wavepackets conducted by using both the Briggs collision
criterion and the saddle-point approach has revealed that, in the case R = 200,
θ = 4.6◦, there is a bifurcation of the saddle-point contributing to the instability,
where the velocity along the ray V is a bifurcation parameter. The bifurcating saddle
point, found by using the collision criterion, is not connected by continuity in V
with the contributing saddle point of the most unstable ray. We have studied the
mathematical details and the physical implications of this bifurcation.

From the mathematical point of view, the appearance of a second contributing
saddle point, as a result of the bifurcation, which is not connected by continuity in V
with the saddle point of the most unstable ray, means that the saddle-point treatment
that relies on the continuity argument cannot be regarded as sound. The steepest-
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Figure 12. (a) Cutoff frequency (–) for θ = 5.6◦ and (b) cutoff frequency (–) and most rapidly
amplified frequency (- -) as functions of the Reynolds number R for θ = 4.6◦. Experimental data,
for cutoff frequency (�), and most rapidly amplified frequency (�), are taken from figures 4 and
18 in Liu et al. (1993). The parameters values are ν = 5.02× 10−6 m2 s−1, T = 69× 10−3 N m−1 and
ρ = 1130 kg m−3.

descent path at the saddle point connected by continuity in V with the saddle point
of the most unstable ray is almost parallel to the original Fourier contour, i.e. to the
real k-axis. On the other hand, the steepest-descent path at the second – bifurcating –
saddle point is almost perpendicular to the original Fourier contour. This clearly
shows that the orientation of the steepest-descent path at an unstable saddle point
contains in itself no information with regard to whether this point contributes to the
instability.

For R = 200, θ = 4.6◦, the saddle-point procedure based on the continuity argument
has failed to recover a significant subinterval of the interval of the unstable rays in
the present case of a real physical flow. The failure casts doubt on the applicability
of this procedure to other flows, thus virtually depriving the instability theory of one
of its tools that until now was viewed as reliable. The implications of this outcome
for two-dimensional flows are not too grave. Indeed, in the two-dimensional case, the
Briggs collision criterion can be readily implemented numerically, and the only price
that one has to pay for the ultimate reliability of the analysis is that computations
based on this criterion require more CPU time than saddle-point computations.

On the other hand, the situation with regard to the methodology of analysing un-
stable wave packets in the three-dimensional case is not as simple. The analytical colli-
sion criterion for the absolute/convective instability classification of three-dimensional
flows was derived by Brevdo (1991). According to this criterion, a complex ω0, with
Im ω0 > 0, contributes to absolute instability if and only if (in the most common
case) two l-roots of the system

D(k, l, ω) = 0,
∂D(k, l, ω)

∂k
= 0, (6.1)
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coming from opposite sides of the real l-axis in the complex l-plane collide, when
ω ↘ ω0. Each of the colliding l-roots must be a coalescence root, i.e. it must
satisfy a certain collision condition formulated in terms of k-roots of the equation
D(k, l, ω) = 0. Here, k and l are wavenumbers in two independent spatial directions, ω
is a frequency and D(k, l, ω) is the dispersion relation function. The three-dimensional
collision criterion is considerably more involved than the two-dimensional one, and at
the present time no numerical algorithm for implementing this criterion is available.
All numerical investigations of three-dimensional wavepackets in fluid flows known
to us were conducted until now by applying a saddle-point treatment that uses the
continuity argument. Since such a treatment can in general no longer be regarded
as reliable, the necessity of developing a numerical procedure for implementing
the collision criterion in the three-dimensional case is emphasized. Without such a
procedure and corresponding checks of numerical results obtained previously neither
these results nor possible future computations based on a saddle-point treatment that
makes use of the continuity argument can be safely relied upon.

From the physical standpoint, the bifurcation of the contributing saddle point in
the case studied reveals a strong jump discontinuity of the wavenumber of the most
unstable contribution to the wavepacket as a function of the bifurcation parameter
V . We expect that this discontinuity should be observable in experiments.

We have also performed spatial stability computations and treated spatially amplify-
ing waves in this flow. The computational results compare well with the measurements
of Liu et al. (1993). The comparison of the results of the Gaster (1962) transformation
with the results of our direct computations has shown that, in the present case, this
transformation reproduces practically identically the directly computed spatial growth
rates of all unstable normal modes. For R = 4100 and θ = 4′, we found an abrupt
increase of the spatial amplification rate of the shear branch mode as a function of
the source frequency. We argue that if the flow can be kept laminar up to R = 4100
then such an increase should be observable in experiments.

With regard to secondary instabilities, the work of Lin (1974) showed that the
nonlinear periodic states, bifurcating from the neutral curve for the primary instability,
could be studied using a complex Ginzburg–Landau equation with the coefficients
determined numerically. Therefore the results of Brevdo & Bridges (1996) should be
applicable to this model to determine if the unstable region is broken into two regions:
one absolutely unstable and the other absolutely stable but convectively unstable.

Appendix A. Formal treatment of the IVP

We treat the IVP (2.9) formally by applying the Fourier transform F with respect
to x and the Laplace transform L with respect to time t defined by

F{u}(k) = û(k) =

∫ ∞
−∞
u(x)e−ikxdx, u(x) =

1

2π

∫ ∞
−∞
û(k)eikxdk,

L{w}(ω) = w̃(ω) =

∫ ∞
0

w(t)eiωtdt, w(t) =
1

2π

∫ iσ+∞

iσ−∞
w̃(ω)e−iωtdω.

 (A 1)

The analysis is similar to that used in Brevdo (1988, 1992a) for treating the IVPs for a
geophysical flow and plane Poiseuille flow, respectively. Application of the transforms
(A 1) to the problem (2.9) results in a non-homogeneous boundary-value problem
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(BVP) for a non-homogeneous Orr–Sommerfeld (OS) equation

Lv(y, k, ω) ≡
[(

d2

dy2
− k2

)2

− iR(Uk − ω)

(
d2

dy2
− k2

)
+ ikRU ′′

]
v(y, k, ω)

= −R G(y, k, ω)− R
(

d2

dy2
− k2

)
v0(y, k) ≡ S(y, k, ω), 0 < y < 1,

(A 2a)

B1v(0, k, ω) =
1

ω − k
[
if1(k, ω) + i

(
d2

dy2
+ k2

)
v0(y, k)|y=1

]
≡ 1

ω − k g1(k, ω), (A 2b)

B2v(0, k, ω) = f2(k, ω)− Rdv0

dy
(0, k) ≡ g2(k, ω), (A 2c)

v(1, k, ω) = f3(k, ω),
dv

dy
(1, k, ω) = f4(k, ω), (A 2d, e)

where the boundary condition operators B1 and B2 are given by

B1 =
d2

dy2
+ k2 − 2k

ω − k ,

B2 =
d3

dy3
+ ik

(
cot θ +Wk2

)( d2

dy2
+ k2

)
− (ikR − iωR + 3k2)

d

dy
.

 (A 3)

In (A 2), (A 3) and further in the text the tilde and the hat denoting the transformed
variables are omitted for convenience. The dependent variables are distinguished
from their transforms by pointing out the independent variables. Observe that the
functions G(y, k, ω), v0(y, k), and fi(k, ω), 1 6 i 6 4, are entire functions of (k, ω) (the
first two of them are for every y ∈ [0, 1]), since they are Fourier–Laplace transforms
of functions with finite support in (x, t). Hence, so are the functions S(y, k, ω), g1(k, ω),
and g2(k, ω). The operator B1 in (A 3) is singular at ω = k. In the analysis below we
present a modification of the procedure in Brevdo (1988, 1992a) for constructing a
solution of the IVP which takes this singularity into account.

A.1. Dispersion relation

For ω 6= k, let v1(y, k, ω), v2(y, k, ω), v3(y, k, ω) and v4(y, k, ω) denote the solutions of
the homogeneous equation associated with the equation of the problem (A 2), i.e. the
one with S(y, k, ω) = 0, that satisfy the following initial conditions:

v1 = 1, v′1 = 0, B1v1 = 0, B2v1 = 0 at y = 0, (A 4a)

v2 = 0, v′2 = 1, B1v2 = 0, B2v2 = 0 at y = 0, (A 4b)

v3 = 0, v′3 = 0, v′′3 = 1, v′′′3 = 0 at y = 1, (A 4c)

v4 = 0, v′4 = 0, v′′4 = 0, v′′′4 = 1 at y = 1, (A 4d)

where the prime denotes d/dy. The solutions v3 and v4 exist for any complex k and ω
and are entire functions of (k, ω) because the coefficients in the OS equation (A 2) are
entire functions of (k, ω). Operators B1 and B2 defined in (A 3) are of the second and
third order, respectively, with the highest derivatives having the coefficient unity. The
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term 2k/(ω − k) in the expression for the operator B1 in (A 3) is analytic everywhere
except at ω = k; the rest of the coefficients in B1 and all the coefficients in B2 in (A 3)
are entire functions of (k, ω). Therefore, the functions v1 and v2 exist and are analytic
for all complex (k, ω), with a possible exception at ω = k.

For ω 6= k, let

V1(y, k, ω) = (ω − k)v1(y, k, ω). (A 5)

Since, according to the definition, v1(y, k, ω) is a solution of the homogeneous OS
equation Lv1(y, k, ω) = 0 satisfying the initial conditions (A 4a), the function V1(y, k, ω)
is a solution of the initial-value problem

LV1(y, k, ω) = 0, 0 < y < 1,

V1(0, k, ω) = ω − k, V ′1(0, k, ω) = 0,

V ′′1 (0, k, ω) = −k2(ω − k) + 2k,

V ′′′1 (0, k, ω) = −2ik2(cot θ +Wk2).

 (A 6)

Here the initial conditions for V1 and V ′1 at y = 0 follow from the first two conditions
of (A 4a), the initial conditions for V ′′1 and V ′′′1 are obtained by using the first two
of (A 4a) in the second two of (A 4a) and using the expressions (A 3) for B1 and B2.
The problem (A 6) is non-singular for all complex k and ω, including ω = k. Since
the coefficients of the OS operator L and the right-hand sides of the initial conditions
in (A 6) are entire functions of (k, ω), so is the solution V1(y, k, ω) of the problem
(A 6), for all y ∈ [0, 1]. Observe that, for ω = k, the function V1(y, k, k) satisfies the
initial-value problem

L|ω=k V1(y, k, k) = 0, 0 < y < 1,

V1(0, k, k) = 0, V ′1(0, k, k) = 0,

V ′′1 (0, k, k) = 2k, V ′′′1 (0, k, k) = −2ik2(cot θ +Wk2),

 (A 7)

and is, therefore, different from zero on the entire interval 0 6 y 6 1, for k 6= 0, with an
exception of at most a finite set of points Y in [0, 1]. This follows from the analyticity
in y ∈ [0, 1] of the coefficients of the OS operator in (A 2). Consequently, for every
y ∈ [0, 1] \ Y, the function v1(y, k, ω) = V1(y, k, ω)/(ω − k) has a non-removable
singularity, as a function of (k, ω), at (k, ω)|ω=k in C2.

The function v2(y, k, ω) defined for ω 6= k satisfies the initial-value problem

Lv2(y, k, ω) = 0, 0 < y < 1,

v2(0, k, ω) = 0, v′2(0, k, ω) = 1,

v′′2 (0, k, ω) = 0, v′′′2 (0, k, ω) = ikR − iωR + 3k2.

 (A 8)

The initial conditions in (A 8) are derived in a fashion similar to that used for the
problem (A 6). The solution of the problem (A 8) is an entire function of (k, ω)
implying that, for all y ∈ [0, 1], the function v2(y, k, ω) can be analytically continued
to all points of the set {(k, ω) | ω = k, k, ω ∈ C}, i.e. analytically continued to an
entire function.
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For ω 6= k, we introduce the notation

Φ(y, k, ω) =


v1 v2 v3 v4

v′1 v′2 v′3 v′4
v′′1 v′′2 v′′3 v′′4
v′′′1 v′′′2 v′′′3 v′′′4

 . (A 9)

The Wronskian W = det Φ(y, k, ω) does not depend on y, since the coefficient of the
third derivative of v(y, k, ω) in the OS operator in (A 2) is zero. Therefore, we can
write

D̃(k, ω) = det Φ(y, k, ω). (A 10)

By using the conditions (A 4) at y = 1 in (A 9) we obtain

D̃(k, ω) = det


v1 v2 0 0

v′1 v′2 0 0

v′′3 v′′4 1 0

v′′′3 v′′′4 0 1


|y=1

= [v1(y, k, ω)v′2(y, k, ω)− v′1(y, k, ω)v2(y, k, ω)]|y=1

=
1

ω − k [V1(y, k, ω)v′2(y, k, ω)− V ′1(y, k, ω)v2(y, k, ω)]|y=1

=
1

ω − kD(k, ω), (A 11)

with

D(k, ω) = [V1(y, k, ω)v′2(y, k, ω)− V ′1(y, k, ω)v2(y, k, ω)]|y=1,

where the definition (A 5) was used. Since V1(y, k, ω) and v2(y, k, ω) are entire functions
of (k, ω) for all y ∈ [0, 1], so is the function D(k, ω).

In order to show that D̃(k, ω) is not an entire function of (k, ω), we compute it
for ω = ck, where c 6= 1 is fixed, in the limit k → 0. For ω = ck, the initial-value
problem for v1 has coefficients analytic in k and y because the only singular coefficient
2k/(ω − k) in (A 2), (A 3) appearing in B1 is equal to the constant 2/(c− 1), for such
k and ω. The function v2(y, k, ω) is an entire function of (k, ω). Therefore, in the
limit k → 0, the functions v1(y, k, ck) and v2(y, k, ck) converge in C1[0, 1] in y to the
solutions of the following initial-value problems:

d4

dy4
v1(y, 0, 0) = 0, 0 < y < 1,

v1(0, 0, 0) = 1, v′1(0, 0, 0) = 0, v′′1 (0, 0, 0) =
2

c− 1
, v′′′1 (0, 0, 0) = 0,

 (A 12)

and

d4

dy4
v2(y, 0, 0) = 0, 0 < y < 1,

v2(0, 0, 0) = 0, v′2(0, 0, 0) = 1, v′′2 (0, 0, 0) = 0, v′′′2 (0, 0, 0) = 0,

 (A 13)
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respectively. We have

v1(y, 0, 0) =
1

c− 1
y2 + 1, v2(y, 0, 0) = y, (A 14)

and, therefore, from (A 11),

lim
ω=ck, k→0

D̃(k, ω) =

(
1

1− cy
2 + 1

)
|y=1

=
2− c
1− c . (A 15)

Since the limit (A 15) depends on the number c, whose value is different from 1 but

otherwise arbitrary, the function D̃(k, ω) is not analytic at (k, ω) = (0, 0). This also

shows that D̃(k, ω) 6≡ 0 in C2, and, hence, D(k, ω) 6≡ 0.
The function D(k, ω) can also be expressed by evaluating the Wronskian at y = 0.

We recall that the operators B1 and B2 in (A 3) are of the second and third order
respectively, and are linear combinations of the differentiation operators, with the
coefficient of the highest derivative being unity in each of them. Hence, by applying
row operations to the determinant of Φ(y, k, ω) it can be brought to the form

D̃(k, ω) = det


v1 v2 v3 v4

v′1 v′2 v′3 v′4
B1v1 B1v2 B1v3 B1v4

B2v1 B2v2 B2v3 B2v4

 . (A 16)

We evaluate (A 16) at y = 0 by using the corresponding conditions in (A 4) and the
explicit expression for B1 in (A 3). It yields

D̃(k, ω) = det


1 0 v3 v4

0 1 v′3 v′4
0 0 B1v3 B1v4

0 0 B2v3 B2v4


|y=0

= [B1v3(y, k, ω)B2v4(y, k, ω)− B2v3(y, k, ω)B1v4(y, k, ω)]|y=0

=
1

ω − k
{[

(ω − k)
(

d2

dy2
+ k2

)
− 2k

]
v3 B2v4

−
[
(ω − k)

(
d2

dy2
+ k2

)
− 2k

]
v4 B2v3

}
|y=0

=
1

ω − kD(k, ω), (A 17)

with

D(k, ω) =

{[
(ω − k)

(
d2

dy2
+ k2

)
− 2k

]
v3 B2v4

−
[
(ω − k)

(
d2

dy2
+ k2

)
− 2k

]
v4 B2v3

}
|y=0

.

All terms of the expression for D(k, ω) in (A 18) are entire functions of (k, ω), since
the functions v3(y, k, ω) and v4(y, k, ω), and the coefficients of B2 also are entire.

As in the treatment of similar problems in Brevdo (1988, 1992a) we have the
following alternative.
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Proposition. For any complex pair (k, ω), with ω 6= k, either v1, v2, v3 and v4 defined
in (A 4) are linearly independent or there exists a non-trivial solution v̆(y, k, ω) of the
homogeneous BVP associated with the problem (A 2), i.e. the one with S = g1 = g2 =
f3 = f4 = 0.

Proof. Let us assume that v1, v2, v3 and v4 are linearly independent. Then
det Φ 6= 0 and the general solution of the homogeneous OS equation is given by
v = c1v1 + c2v2 + c3v3 + c4v4, where ci, 1 6 i 6 4, are independent of y. According to
(A 4), the solution v satisfies the homogeneous boundary conditions associated with
the boundary conditions of the BVP (A 2) if and only if[

B1v3 B1v4

B2v3 B2v4

]
|y=0

[
c3

c4

]
=

[
0

0

]
,

and [
v1 v2

v′1 v′2

]
|y=1

[
c1

c2

]
=

[
0

0

]
.


(A 18)

From (A 11) and (A 18), the determinant of the matrix of each of the systems in (A 18)
is equal to det Φ 6= 0. Hence, the only solution of (A 18) is c1 = c2 = c3 = c4 = 0,
i.e. no non-trivial v̆(y, k, ω) exists. On the other hand, if v1, v2, v3 and v4 are linearly
dependent then det Φ = 0, and each of the systems in (A 18) has non-trivial solutions.
We choose c1 = c2 = 0, and let (c3, c4) be an arbitrary non-trivial solution of
the first of (A 18). Then the solution of the homogeneous OS equation given by
v̆(y, k, ω) = c3v3(y, k, ω) + c4v4(y, k, ω) satisfies the homogeneous boundary conditions
associated with the conditions of the BVP (A 2). Moreover, this v̆(y, k, ω) is non-trivial,
since, according to (A 4), it satisfies v̆′′(1, k, ω) = c3 and v̆′′′(1, k, ω) = c4. Hence, at
y = 1, (v̆′′)2 + (v̆′′′)2 = c2

3 + c2
4 6= 0.

An immediate consequence of the proposition is that the equation

D(k, ω) = 0 (A 19)

gives, for ω 6= k, the complex dispersion relation of the problem as it is defined in
the normal mode approach (Chandrasekhar 1961, pp. 3–6; Drazin & Reid 1981, p.
11). Since D(k, ω) is analytic in C2, and D(k, ω) 6≡ 0, the set of solutions in ω of
the equation D(k0, ω) = 0 is, for every fixed complex k0, either discrete or the entire
complex plane. The latter is possible only when D(k, ω) = (k− k0)Q(k, ω), and Q(k, ω)
is analytic in C2.

A.2. Solution of the IVP

Let (k, ω) be a complex pair, with ω 6= k, which does not belong to the set of solutions
of (A 19). Then the BVP (A 2) has a unique solution that can be found by using a
variation of parameters, with the fundamental set of solutions vi, 1 6 i 6 4, defined
in (A 4). The solution is given by

v(y, k, ω) =
T (y, k, ω)

D(k, ω)
, (A 20)

with

T (y, k, ω) = H(y, k, ω) +

∫ 1

0

K(y, ζ, k, ω) S(ζ, k, ω) dζ, (A 21)
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where

H(y, k, ω) = (ω − k)[v′2(1, k, ω)f3(k, ω)− v2(1, k, ω)f4(k, ω)]v1(y, k, ω)

+(ω − k)[−v′1(1, k, ω)f3(k, ω) + v1(1, k, ω)f4(k, ω)]v2(y, k, ω)

+[B2v4(0, k, ω)g1(k, ω)− (ω − k)B1v4(0, k, ω)g2(k, ω)]v3(y, k, ω)

+[−B2v3(0, k, ω)g1(k, ω) + (ω − k)B1v3(0, k, ω)g2(k, ω)]v4(y, k, ω),

(A 22)

and

K(y, ζ, k, ω)

=

{
(ω − k)[M41(ζ, k, ω)v1(y, k, ω)−M42(ζ, k, ω)v2(y, k, ω)] for y 6 ζ,

(ω − k)[−M43(ζ, k, ω)v3(y, k, ω) +M44(ζ, k, ω)v4(y, k, ω)] for y > ζ.
(A 23)

In (A 23), Mmn(ζ, k, ω) are the minors of the fundamental matrix Φ defined in (A 9).
Recall that V1(y, k, ω) = (ω − k)v1(y, k, ω), v2(y, k, ω), v3(y, k, ω) and v4(y, k, ω) are

entire functions of (k, ω), for all y ∈ [0, 1]. Hence, so are the functions M41(y, k, ω),
(ω−k)M42(y, k, ω), (ω−k)M43(y, k, ω) and (ω−k)M44(y, k, ω), see (A 9). Consequently,
K(y, ζ, k, ω) is analytic in (k, ω) in C2, for all y, ζ ∈ [0, 1]. Since the functions S(y, k, ω),
f3(k, ω), f4(k, ω), g1(k, ω) and g2(k, ω) are analytic in (k, ω) in C2, so is the function
H(y, k, ω) for each y ∈ [0, 1]. This implies that the function T (y, k, ω) is an entire
function of (k, ω) for all y ∈ [0, 1].

By using (A 20) the solution of the IVP (2.9) can formally be expressed as

v(y, x, t) =
1

4π2

∫ iσ+∞

iσ−∞

∫ ∞
−∞

T (y, k, ω)

D(k, ω)
ei(kx−ωt)dk dω. (A 24)

Here σ is a real number that satisfies

σ > σm = max {Im ω | D(k, ω) = 0, Im k = 0}. (A 25)

The flow is unstable when σm > 0, and it is stable when σm 6 0. For physical reasons,
σm must be finite because otherwise the problem is ill posed. Hence, σ is positive in
the unstable case. In the stable case, we can also choose σ to be positive. Then in
the entire integration domain of the integral in (A 24), ω 6= k, since k is real and
Im ω = σ > 0. This implies that (A 24) indeed gives the solution of the IVP (2.9),
provided the integral converges absolutely and uniformly in y, x, t, together with its
corresponding derivatives appearing in (2.9).

In §§ 3, 4 we study the long-time asymptotics of the solution v(y, x, t) along a ray
x = x0 +Vt, where x0 is fixed and V is the constant ray velocity. The solution (A 24)
in this case can be expressed as

v(y, x0 + Vt, t) =
1

4π2

∫ iσ+∞

iσ−∞

∫ ∞
−∞

T (y, k, ω)

D(k, ω)
ei[kx0−(ω−Vk)t]dk dω

=
1

4π2

∫ iσ+∞

iσ−∞

∫ ∞
−∞

T (y, k, ω + Vk)

D(k, ω + Vk)
ei(kx0−ωt)dk dω. (A 26)

Since T (y, k, ω) is a linear combination (also in the sense of a continuous summation)
of the functions S(y, k, ω), f3(k, ω), f4(k, ω), g1(k, ω) and g2(k, ω) representing exter-
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nally imposed perturbations in (2.9), the convergence of integrals (A 24) and (A 26)
can be achieved by imposing restrictions on perturbation functions in (2.9).

Appendix B. Saddle-point approach
The saddle-point approach in the two-dimensional case is derived from the following

formal consideration (Briggs 1964; Bers 1973; Huerre 1987; Huerre & Monkewitz
1985, 1990; Brevdo 1988). By applying the residue theory to the inverse Laplace
integral in (A 26) the solution (A 26) can be expressed in the form

v(y, x0 + Vt, t) =

∫ ∞
−∞
A(y, k)ei[kx0−(ω(k)−Vk)t] dk. (B 1)

An asymptotic evaluation of the integral in (B 1) is carried out by using the steepest-
descent method. For this purpose, the integration contour in (B 1) is deformed
into an equivalent steepest-descent contour for the contributing saddle point of
ωV (k) = ω(k) − Vk. Existence of the equivalent steepest-descent contour is the
cornerstone question of the approach (Briggs 1964). The saddle-point approach in
the three-dimensional case is similar. The collision criterion derived by Briggs (1964)
allows one to look for contributing saddle points without addressing the existence of
the global equivalent steepest-descent contour. Since checking the collision criterion
directly in the two-dimensional case is numerically more expensive than searching
for saddle points, and since no numerical procedure exists at present for checking
the collision criterion for three-dimensional instabilities derived by Brevdo (1991), the
saddle-point treatment was used in the literature for both cases.

The saddle-point technique in the two-dimensional case is based on computing
points at which dωV/dk = 0 holds and Im ωV is positive. However, the existence
of such points is not sufficient for instability, and to overcome this difficulty in the
framework of the saddle-point treatment, a procedure described below, considered
until now as reliable, was used in stability studies. We present here a description
of this procedure for two-dimensional instabilities. In the three-dimensional case the
procedure is similar.

The unstable branch of frequency ω(k) ≡ ωr(kr, ki) + i ωi(kr, ki) is computed for
real k. Note that D(k, ω(k)) ≡ 0 holds. Let, for real k, ωi(kr, 0) attain its maximum
at kr = kmr, and Vg = ∂ωr(kmr, 0)/∂kr. The function ωVg (k) = ω(k) − Vgk satisfies
D(k, ωVg (k) + Vgk) ≡ 0 and dωVg (k)/dk = 0 at k = kmr. Hence, D(k, ω + Vgk) = 0
has a double root in k for k = kmr, ω = ωr(kmr, 0) − Vgkmr + i ωi(kmr, 0). Moreover,
the Taylor expansion of ωVg (k) at the point k = kmr is given by ωVg (k) = ωVg (kmr) +
1
2

d2ωVg (kmr)/dk
2 (k − kmr)2 + O[(k − kmr)3]. Therefore, if d2ωVg (kmr)/dk

2 6= 0, which is
the case in all instabilities known to us, the two colliding k-roots of D(k, ω+Vgk) = 0
that form the saddle point at krm satisfy, to the leading order in [ω − ωVg (kmr)],

k1,2(ω) = kmr ±
√

2
[ω − ωVg (kmr)]1/2

[d2ωVg (kmr)/dk
2]1/2

. (B 2)

Consequently, k1(ω) and k2(ω) move to opposite sides of the real k-axis in the k-
plane when ω moves vertically slightly starting with the point ωVg (kmr). In the limit
Im [ω−ωVg (kmr)]→∞, Re [ω−ωVg (kmr)] = 0, each of these roots remains on the side
of the real k-axis to which it originally moved because the imaginary part of ωVg (k)
attains its maximum on the real k-axis at k = kmr. This means that the roots k1,2(ω)
satisfy the collision criterion and, therefore, the saddle point (kmr, ωVg (kmr)) makes a



70 L. Brevdo, P. Laure, F. Dias and T. J. Bridges

contribution to the instability of the flow along the ray x = x0 +Vgt. This is the most
unstable contribution among the contributions along all unstable rays. This follows
from the fact that no k-root can cross the real k-axis, for ω with Im ω > Im ωVg (kmr).
Therefore, Im ωVg (kmr) is the maximum growth rate.

The technique proceeds by following the movement of the saddle point of ωV (k)
in the complex k-plane starting with the point (kmr, 0) when the ray velocity V
varies continuously starting with Vg. Since ωV (k) = ω(k) − Vk, this can be done by
computing the ω-roots of D(k, ω) = 0 and following the movement of the point in
the k-plane at which dω/dk = V holds. At the outset, the unstable branch of ω, for
real k, is computed, the point kmr is found and Vg is computed. Thus, the saddle point
kmr on the real k-axis is the starting point in this procedure. The movement of the
saddle point in the k-plane satisfying ω′(k) = V is traced by varying the imaginary
part of k with small steps starting with Im k = 0, i.e. Im k = k1

i , k
2
i , . . . , computing

at each step n the frequency ωn(kr) ≡ ω(kr + ikni ), and finding a point at which
Im ωn(kr) has a maximum connected by continuity with the maximum computed
in the previous step. Here the superscript n is a step number. Let knmr be the point
of maximum at step n which satisfies d[Im ωn(kmr)]/dkr = 0. Then at step n the
ray velocity is computed as Vn = d[Re ωn(knmr)]/dkr. The growth rate along the ray
x = x0 + Vnt is ωi(V

n) = Im ωn(knmr) − Vnkni , and the frequency of oscillations is
ωr(V

n) = −[Re ωn(knmr)− Vnknmr].
Computations are performed for a sequence of increasing kni , n = 1, 2, . . . , starting

with ki = 0, and similarly for a sequence of decreasing kji , j = 1, 2, . . . , until the points
are reached for which the growth rate vanishes (Simmons & Hoskins 1979; Deissler
1987; Brevdo 1995). Let these points correspond to the ray velocities Vl and Vr, with
Vl < Vg < Vr. It is then assumed that (i) the interval (Vl, Vr) consists of unstable
ray velocities, and (ii) for each ray velocity this procedure computes the maximum
growth rate.

REFERENCES

Benjamin, T. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2,
554–574.

Benjamin, T. B. 1961 The development of three-dimensional disturbances in an unstable film of
liquid flowing down an inclined plane. J. Fluid Mech. 10, 401–419.

Benney, D. J. 1966 Long waves on liquid films. J. Math. Phys. 45, 150–155.

Bers, A. 1973 Theory of absolute and convective instabilities. In International Congress on Waves
and Instabilities in Plasma, Innsbruck, Austria (ed. G. Auer & F. Cap), pp. B1–B52.

Brevdo, L. 1988 A study of absolute and convective instabilities with an application to the Eady
model. Geophys. Astrophys. Fluid Dyn. 40, 1–92.

Brevdo, L. 1991 Three-dimensional absolute and convective instabilities, and spatially amplifying
waves in parallel shear flows. Z. Angew. Math. Phys. 42, 911–942.

Brevdo, L. 1992a Spatially amplifying waves in plane Poiseuille flow. Z. Angew. Math. Mech. 72,
163–174.

Brevdo, L. 1992b A note on the Gaster transformation. Z. Angew. Math. Mech. 72, 305–306.

Brevdo, L. 1995 Convectively unstable wave packets in the Blasius boundary layer. Z. Angew.
Math. Mech. 75, 423–436.

Brevdo, L. 1998 Wave packets, signaling and resonances in a homogeneous waveguide. J. Elasticity
49, 201–237.

Brevdo, L. & Bridges, T. J. 1996 Absolute and convective instabilities of spatially periodic flows.
Phil. Trans. R. Soc. Lond. A 354, 1027–1064.

Bridges, T. J. & Morris, P. J. 1984 Differential eigenvalue problem in which the parameter appears
nonlinearly. J. Comput. Phys. 55, 437–460.



Pulse structure and signalling in a film flow on an inclined plane 71

Briggs, R. J. 1964 Electron-Stream Interaction with Plasmas. MIT Press.

Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.

Chang, H.-C. 1994 Wave evolution on a falling film. Ann. Rev. Fluid Mech. 26, 103–136.

Chang, H.-C. & Demekhin, E. A. 1995 Repulsive dynamics of solitary pulses. Proc. IUTAM/ISIMM
Symposium on Structure and Dynamics of Nonlinear Waves in Fluids, pp. 24–41. World Scientific.

Chang, H.-C. & Demekhin, E. A. 1996 Solitary wave formation and dynamics on falling films.
Adv. Appl. Mech. 32, 1–58.

Chang, H.-C., Demekhin, E. A. & Kopelevich, D. I. 1993 Nonlinear evolution of waves on a
vertically falling film. J. Fluid Mech. 250, 433–480.

Deissler, R. J. 1987 The convective nature of instability in plane Poiseuille flow. Phys. Fluids 30,
2303–2305.

Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.

Floryan, J. M., Davis, S. H. & Kelly, R. E. 1987 Instabilities of a liquid film flowing down a
slightly inclined plane. Phys. Fluids 30, 983–989.

Gaster, M. 1962 A note on the relation between temporally-increasing and spatially-increasing
disturbances in hydrodynamic stability. J. Fluid Mech. 14, 222–224.

Gaster, M. & Grant, I. 1975 An experimental investigation of the formation and development of
a wavepacket in a laminar boundary layer. Proc. R. Soc. Lond. A 347, 253–269.

Huerre, P. 1987 Spatio-temporal instabilities in closed and open flows. In Instabilities and Nonequi-
librium Structures (ed. E. Tirapegui & D. Villaroel), pp. 141–177. Reidel.

Huerre, P. & Monkewitz, P. A. 1985 Absolute and convective instabilities in free shear layers. J.
Fluid Mech. 159, 151–168.

Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows.
Ann. Rev. Fluid Mech. 22, 473–537.

Joo, S. W. & Davis, S. H. 1992 Instabilities of three-dimensional viscous falling films. J. Fluid Mech.
242, 529–547.

Kapitza, P. L. & Kapitza, S. P. 1949 Wave flow of thin layers of a viscous fluid. Zh. Eksper. Teor.
Fiz. 19, 105–120. Also in Collected Papers of P. L. Kapitza (ed. D. Ter Haar), pp. 690–709.
Pergamon, 1965.

Kupfer, K. Bers, A. & Ram, A. K. 1987 The cusp map in the complex-frequency plane for absolute
instabilities. Phys. Fluids 30, 3075–3082.

Lee, J.-J. & Mei, C. C. 1996 Stationary waves on an inclined sheet of viscous fluid at high Reynolds
and moderate Weber numbers. J. Fluid Mech. 307, 191–229.

Lin, S. P. 1974 Finite amplitude side-band stability of a viscous film. J. Fluid Mech. 63, 417–429.

Lingwood, R. J 1997 On the application of the Briggs and steepest-descent methods to a boundary-
layer flow. Stud. Appl. Maths 98, 213–254.

Liu, J. & Gollub, J. P. 1993 Onset of spatially chaotic waves on flowing films. Phys. Rev. Lett. 70,
2289–2292.

Liu, J. & Gollub, J. P. 1994 Solitary wave dynamics of film flows. Phys. Fluids 6, 1702–1712.

Liu, J., Paul, J. D. & Gollub, J. P. 1993 Measurements of the primary instabilities of film flows. J.
Fluid Mech. 250, 69–101.

Liu, J., Schneider, J. B. & Gollub, J. P. 1995 Three-dimensional instabilities in film flows. Phys.
Fluids 7, 55–67.

Mei, C. C. 1966 Nonlinear gravity waves in a thin sheet of viscous fluid. J. Math. Phys. 45, 266–288.

Nusselt, W. 1916 Die Oberflächenkondensation des Wasserdampfes. Z. Ver. Deutsch. Ing. 27, 541–
546.

Orszag, S. 1971 Accurate solution of the Orr–Sommerfeld equation. J. Fluid Mech. 50, 689–703.

Pearlstein, A. J. & Goussis, D. A. 1988 Efficient transformation of certain singular polynomial
matrix eigenvalue problems. J. Comput. Phys. 78, 305–312.

Roskes, G. J. 1970 Three-dimensional long waves on a liquid film. Phys. Fluids 13, 1440–1445.

Simmons, A. J. & Hoskins, B. J. 1979 The downstream and upstream development of unstable
baroclinic waves J. Atmos. Sci. 36, 1239–1254.

Stokes, G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441–455.

Yih, C. S. 1955 Stability of parallel laminar flow with a free surface. In Proc. 2nd US Congr. on
Applied Mechanics, pp. 623–628. ASME.


